Loading…
Session: Envelopes in Optimization
Chair: Yankun Huang
Cluster: nan

Talk 1: Majorization Minorization, Moreau Envelopes, and Deweighting Weighted Least Squares
Speaker: Qiang Heng
Abstract: This paper deals with tactics for fast computation in least squares regression in high dimensions. These tactics include: (a) the majorization-minimization (MM) principle, (b) smoothing by Moreau envelopes, and (c) the proximal distance principal for constrained estimation. In iteratively reweighted least squares, the MM principle can create a surrogate function that trades case weights for adjusted responses. Reduction to ordinary least squares then permits the reuse of the Gram matrix and its Cholesky decomposition across iterations. This tactic is pertinent to estimation in L2E regression and generalized linear models. For problems such as quantile regression, non-smooth terms of an objective function can be replaced by their Moreau envelope approximations and majorized by spherical quadratics. Finally, penalized regression with distance-to-set penalties also benefits from this perspective. Our numerical experiments validate the speed and utility of deweighting and Moreau envelope approximations. Julia software implementing these experiments is available on our web page.

Talk 2: Computing the convex envelope of bivariate piecewise linear-quadratic (PLQ) functions
Speaker: Tanmaya Karmarkar
Abstract: We introduce a linear-time algorithm for computing the convex envelope of bivariate piecewise linear-quadratic (PLQ) functions and establish that the biconjugate is piecewise rational defined over a polyhedral subdivision. Our approach consists of the following steps: (1) compute the convex envelope of each quadratic piece obtaining piecewise rational functions (quadratic divided by linear function) defined over a polyhedral subdivision; (2) compute the conjugate of each resulting piece to obtain piecewise quadratic functions defined over a parabolic subdivision; (3) compute the maximum of all those functions to obtain the conjugate of the original PLQ function as a piecewise quadratic function defined on a parabolic subdivision; (4) compute the conjugate of each resulting piece; and finally (5) compute the maximum over all those functions to obtain the biconjugate as rational functions (quadratic divided by linear function) defined over a polyhedral subdivision.

Talk 3: Inexact Moreau Envelope Lagrangian Method for Non-Convex Constrained Optimization under Local Error Bound Conditions on Constraint Functions
Speaker: Yankun Huang
Abstract: In this paper, we study the inexact Moreau envelope Lagrangian (iMELa) method for solving smooth non-convex optimization problems over a simple polytope with additional convex inequality constraints. By incorporating a proximal term into the traditional Lagrangian function, the iMELa method approximately solves a convex optimization subproblem over the polyhedral set at each main iteration. Under the assumption of a local error bound condition for subsets of the feasible set defined by subsets of the constraints, we establish that the iMELa method can find an $\epsilon$-Karush-Kuhn-Tucker point with $\tilde O(\epsilon^{-2})$ gradient oracle complexity. Paper preprint link: https://arxiv.org/abs/2502.19764.

Speakers
QH

Qiang Heng

Name: Dr. Slothington "Slow Convergence" McNapface Title: Distinguished Professor of Continuous Optimization & Energy Minimization Affiliation: The Lush Canopy Institute of Sluggish Algorithms Bio: Dr. Slothington McNapface is a leading expert in continuous optimization, specializing... Read More →
TK

Tanmaya Karmarkar

Name: Dr. Slothington "Slow Convergence" McNapface Title: Distinguished Professor of Continuous Optimization & Energy Minimization Affiliation: The Lush Canopy Institute of Sluggish Algorithms Bio: Dr. Slothington McNapface is a leading expert in continuous optimization, specializing... Read More →
avatar for Yankun Huang

Yankun Huang

Postdoctoral Scholar, Arizona State University
Thursday July 24, 2025 4:15pm - 5:30pm PDT
Joseph Medicine Crow Center for International and Public Affairs (DMC) 154 3518 Trousdale Pkwy, 154, Los Angeles, CA 90089

Log in to save this to your schedule, view media, leave feedback and see who's attending!

Share Modal

Share this link via

Or copy link