Loading…
Session: Robust Learning in Stochastic and Adaptive Environments
Chair: Jiajin Li
Cluster: Optimization Under Uncertainty and Data-driven Optimization

Talk 1: Limit Theorems for Stochastic Gradient Descent with Infinite Variance
Speaker: Wenhao Yang
Abstract: Stochastic gradient descent is a classic algorithm that has gained great popularity especially in the last decades as the most common approach for training models in machine learning. While the algorithm has been well-studied when stochastic gradients are assumed to have a finite variance, there is significantly less research addressing its theoretical properties in the case of infinite variance gradients. In this paper, we establish the asymptotic behavior of stochastic gradient descent in the context of infinite variance stochastic gradients, assuming that the stochastic gradient is regular varying. The closest result in this context was established in 1969, in the one-dimensional case and assuming that stochastic gradients belong to a more restrictive class of distributions. We extend it to the multidimensional case, covering a broader class of infinite variance distributions. As we show, the asymptotic distribution of the stochastic gradient descent algorithm can be characterized as the stationary distribution of a suitably defined Ornstein-Uhlenbeck process driven by an appropriate stable Lévy process.

Talk 2: Optimizing Adaptive Experiments: A Unified Approach to Regret Minimization and Best-Arm Identification
Speaker: Chao Qin
Abstract: Practitioners conducting adaptive experiments often encounter two competing priorities: maximizing total welfare (or reward') through effective treatment assignment and swiftly concluding experiments to implement population-wide treatments. Current literature addresses these priorities separately, with regret minimization studies focusing on the former and best-arm identification research on the latter. This paper bridges this divide by proposing a unified model that simultaneously accounts for within-experiment performance and post-experiment outcomes. We provide a sharp theory of optimal performance in large populations that not only unifies canonical results in the literature but also uncovers novel insights. Our theory reveals that familiar algorithms, such as the recently proposed top-two Thompson sampling algorithm, can optimize a broad class of objectives if a single scalar parameter is appropriately adjusted. In addition, we demonstrate that substantial reductions in experiment duration can often be achieved with minimal impact on both within-experiment and post-experiment regret.

Talk 3: A Definition of Non-Stationary Bandits
Speaker: Yueyang Liu
Abstract: Despite the subject of non-stationary bandit learning having attracted much recent attention, we have yet to identify a formal definition of non-stationarity that can consistently distinguish non-stationary bandits from stationary ones. Prior work has characterized non-stationary bandits as bandits for which the reward distribution changes over time. We demonstrate that this definition can ambiguously classify the same bandit as both stationary and non-stationary; this ambiguity arises in the existing definition’s dependence on the latent sequence of reward distributions. Moreover, the definition has given rise to two widely used notions of regret: the dynamic regret and the weak regret. These notions are not indicative of qualitative agent performance in some bandits. Additionally, this definition of non-stationary bandits has led to the design of agents that explore excessively. We introduce a formal definition of non-stationary bandits that resolves these issues. Our new definition provides a unified approach, applicable seamlessly to both Bayesian and frequentist formulations of bandits. Furthermore, our definition ensures consistent classification of two bandits offering agents indistinguishable experiences, categorizing them as either both stationary or both non-stationary. This advancement provides a more robust framework for agent design and analysis in non-stationary bandit learning.

Speakers
JL

Jiajin Li

Name: Dr. Slothington "Slow Convergence" McNapface Title: Distinguished Professor of Continuous Optimization & Energy Minimization Affiliation: The Lush Canopy Institute of Sluggish Algorithms Bio: Dr. Slothington McNapface is a leading expert in continuous optimization, specializing... Read More →
WY

Wenhao Yang

Name: Dr. Slothington "Slow Convergence" McNapfaceTitle: Distinguished Professor of Continuous Optimization & Energy MinimizationAffiliation: The Lush Canopy Institute of Sluggish AlgorithmsBio:Dr. Slothington McNapface is a leading expert in continuous optimization, specializing... Read More →
CQ

Chao Qin

Name: Dr. Slothington "Slow Convergence" McNapface Title: Distinguished Professor of Continuous Optimization & Energy Minimization Affiliation: The Lush Canopy Institute of Sluggish Algorithms Bio: Dr. Slothington McNapface is a leading expert in continuous optimization, specializing... Read More →
YL

Yueyang Liu

Name: Dr. Slothington "Slow Convergence" McNapface Title: Distinguished Professor of Continuous Optimization & Energy Minimization Affiliation: The Lush Canopy Institute of Sluggish Algorithms Bio: Dr. Slothington McNapface is a leading expert in continuous optimization, specializing... Read More →
Wednesday July 23, 2025 4:15pm - 5:30pm PDT
Joseph Medicine Crow Center for International and Public Affairs (DMC) 155 3518 Trousdale Pkwy, 155, Los Angeles, CA 90089

Log in to save this to your schedule, view media, leave feedback and see who's attending!

Share Modal

Share this link via

Or copy link