Loading…
Monday July 21, 2025 10:30am - 11:45am PDT
Session: Distributed Optimization and Learning
Chair: Shi Pu
Cluster: Multi-agent Optimization and Games

Talk 1: Variance-reduced accelerated methods for decentralized stochastic double-regularized nonconvex strongly-concave minimax problems
Speaker: Yangyang Xu
Abstract: In this talk, I will present an algorithmic framework for solving the decentralized, stochastic nonconvex strongly-concave (NCSC) minimax problem with nonsmooth regularization terms on both primal and dual variables, wherein a network of $m$ computing agents collaborate via peer-to-peer communications. We consider when the coupling function is in expectation or finite-sum form and the double regularizers are convex functions, applied separately to the primal and dual variables. Our algorithmic framework introduces a Lagrangian multiplier to eliminate the consensus constraint on the dual variable. Coupling this with variance-reduction (VR) techniques, our proposed method, entitled VRLM, by a single neighbor communication per iteration, is able to achieve an $\mathcal{O}(\kappa^3\varepsilon^{-3})$ sample complexity under the general stochastic setting, with either a big-batch or small-batch VR option, where $\kappa$ is the condition number of the problem and $\varepsilon$ is the desired solution accuracy. With a big-batch VR, we can additionally achieve $\mathcal{O}(\kappa^2\varepsilon^{-2})$ communication complexity. Under the special finite-sum setting, our method with a big-batch VR can achieve an $\mathcal{O}(n + \sqrt{n} \kappa^2\varepsilon^{-2})$ sample complexity and $\mathcal{O}(\kappa^2\varepsilon^{-2})$ communication complexity, where $n$ is the number of components in the finite sum. All complexity results match the best-known results achieved by a few existing methods for solving special cases of the problem we consider. To the best of our knowledge, this is the first work which provides convergence guarantees for NCSC minimax problems with general convex nonsmooth regularizers applied to both the primal and dual variables in the decentralized stochastic setting.

Talk 2: A Moreau Envelope Approach for LQR Meta-Policy Estimation
Speaker: César Uribe
Abstract: We study the problem of policy estimation for the Linear Quadratic Regulator (LQR) in discrete-time linear time-invariant uncertain dynamical systems. We propose a Moreau Envelope-based surrogate LQR cost, built from a finite set of realizations of the uncertain system, to define a meta-policy efficiently adjustable to new realizations. Moreover, we design an algorithm to find an approximate first-order stationary point of the meta-LQR cost function. Numerical results show that the proposed approach outperforms naive averaging of controllers on new realizations of the linear system. We also provide empirical evidence that our method has better sample complexity than Model-Agnostic Meta-Learning (MAML) approaches.

Talk 3: An Online Optimization Perspective on First-Order and Zero-Order Decentralized Nonsmooth Nonconvex Stochastic Optimization
Speaker: Emre Sahinoglu
Abstract: We investigate the finite-time analysis of finding \goldstat points for nonsmooth nonconvex objectives in decentralized stochastic optimization. A set of agents aim at minimizing a global function using only their local information by interacting over a network. We present a novel algorithm, called Multi Epoch Decentralized Online Learning (ME-DOL), for which we establish the sample complexity in various settings. First, using a recently proposed online-to-nonconvex technique, we show that our algorithm recovers the optimal convergence rate of smooth nonconvex objectives. We then extend our analysis to the nonsmooth setting, building on properties of randomized smoothing and Goldstein-subdifferential sets. We establish the sample complexity of $O(\delta^{-1}\epsilon^{-3})$, which to the best of our knowledge is the first finite-time guarantee for decentralized nonsmooth nonconvex stochastic optimization in the first-order setting (without weak-convexity), matching its optimal centralized counterpart. We further prove the same rate for the zero-order oracle setting without using variance reduction.

Speakers
YX

Yangyang Xu

Name: Dr. Slothington "Slow Convergence" McNapface Title: Distinguished Professor of Continuous Optimization & Energy Minimization Affiliation: The Lush Canopy Institute of Sluggish Algorithms Bio: Dr. Slothington McNapface is a leading expert in continuous optimization, specializing... Read More →
avatar for César Uribe

César Uribe

Assistant Professor, Electrical and Computer Engineering, Rice University
César A. Uribe received his BSc. in Electronic Engineering from Universidad de Antioquia in 2010. He then received an MSc. in Systems and Control from Delft University of Technology in the Netherlands in 2013. In 2016, be received an MSc. in Applied Mathematics from the University... Read More →
Monday July 21, 2025 10:30am - 11:45am PDT
Taper Hall (THH) 102 3501 Trousdale Pkwy, 102, Los Angeles, CA 90089

Log in to save this to your schedule, view media, leave feedback and see who's attending!

Share Modal

Share this link via

Or copy link